hydrilla

  • It’s not what you eat, it’s what you absorb!

    “It’s not what you eat, it’s what you absorb,” a phrase that applies equally to the uptake of essential nutrients by plants. Application of an essential plant nutrient does not always mean that the plant will be able to uptake that mineral and then move it through the vascular system into the plant tissues.

    The availability of plant nutrients is in fact dictated by the form of the mineral, environmental temperature, humidity, photosynthesis, pH of the root zone, and most importantly the relative concentration of each mineral in the nutrient solution. It is the balance of these minerals that are often forgotten when growers are formulating plant nutrient recipes and adding supplements to reach specifically targeted mineral compositions.

    There is a well-known system that classifies essential plant nutrients into “macro” and “micro” categories based on their concentrations in the plant tissue. Less understood is the relationship of the electrical charge of the individual ions and how it affects their bioavailability to the plant. Ions exist as either positively charged (cations) or negatively charged (anions) depending on the balance of electrons (negative) versus protons (positive). It is the strength of the ionic charge that will affect the movement of the ions into and out of the plant. By understanding the strength of the positive or negative charge of essential plant nutrients, we can begin to comprehend the selective ion uptake mechanisms of a plant’s physiology. The table below shows the elemental forms of plant nutrients and their ionic charges in the forms that are available for plant uptake.

    The movement of ions into plant roots occurs by both active and passive transport. Passive transport means that the ions are carried with the uptake of water into the plant without energy from the plant. The water movement factors that affect passive transport are temperature, humidity, photosynthesis rates, the concentration of ions in solution versus within the plant cell, and plant transpiration rates based on the stage of growth. Active transport requires energy from the plant and ion movement is determined by competition between ions based on their individual charge. The monovalent ions (single charged) are moved into the plant more easily than divalent ions (double charged), while divalent ions are taken up more easily than trivalent ions (triple charged). This means that the plant will accumulate more potassium (a monovalent ion) than calcium and magnesium (divalent ions) due to the difference in their charge. Plants typically maintain a negative interior (inside the plasma membrane) relative to the exterior. The slightly negative state of the cell interior and the environment must be maintained and, thus, is related to ion uptake. When there are more cations than anions present, the overall charge becomes excessively positive, and an increase in anions or a decrease in cation uptake occurs to restore physiological conditions. For example, an excess of ammonium (NH4+) cations decreases the uptake of potassium (K+), calcium (Ca2+), and Magnesium (Mg2+). The same relationship exists for anions - excess anions lead to a lower uptake of anions or an increase in cations to balance the cell’s charge. If nitrate (NO3-) is the major anion in excess, then the uptake of cations such as potassium (K+), calcium (Ca2+), and Magnesium (Mg2+) will increase to compensate for the overall negative charge caused by excess nitrate levels.

    Many growers give themselves labels based on the types of inputs they use in their gardens, often referring to “strict organic practices” or “sterile, mineral-based hydro”. Perhaps you’re the type of gardener who avoids “chemicals,” or only uses “organics”, but can you define these terms? What makes something truly organic? Every grower should understand what they put into their gardens and why.

    What is a chemical?

    When we use words like chemicals or chemistry, we are simply referring to the study and use of elements from the Periodic Table. The elements found in the Periodic Table are the basic atoms that make up everything on this planet and many chemicals that exist in the natural world. All Plants produce chemicals throughout their life cycle. In an organic garden, we rely on microorganisms to convert organic matter into chemical forms that are taken up by plants. Chemicals can originate from natural sources. In some respects, organic gardening is a natural way of feeding chemicals to plants.

    So, the next logical question: What is Organic?

    Chemists and physicists will tell you that nearly any compound containing carbon is organic, whether that compound is natural or not. The truth is many natural substances are not organic. For example, certain types of naturally occurring rocks are crushed to make fertilizers that contain inorganic phosphorus. Those rocks are technically inorganic, even though they were mined directly from the ground. Many gardeners and agricultural professionals use the word organic to describe fertilizers and plant products that are derived exclusively from plants and animals (manure, kelp, bone meal, etc.). By that definition of the word, Organic growers cannot use inorganic substances, even if they occur naturally.

    One thing to keep in mind: many organic garden products contain inorganic salts. Two popular examples are bat guano and seaweed extract. Because these are derived from animals and plants, they qualify for organic gardening. However, the lab analysis shows a dash of inorganic material included in the final products.

    Confused yet?

    What are Minerals?

    The Periodic Table contains (among other things) the 17 elements required for plants to live: carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, chlorine, copper, iron, manganese, molybdenum, nickel, and zinc. Many scientists and university studies give evidence that silicon should be added to that list as well. Minerals occur in nature, but they are not sourced from plants or animals. These minerals may come from crushed rocks, or they may be generated in a lab via chemical processes. When looking at basic elements and minerals, there is no difference between the crushed rock form and the laboratory derivative. It may take millions of years to accumulate rock formations, which then have to be mined and pulverized, so the laboratory version is much faster. Mining can be quite harmful to the environment, not to mention, expensive and unsafe for workers. Depending on the specific element, one method may be better suited than another for obtaining these minerals with the least environmental and budgetary impact.

    In recent years, there has been increased discussion regarding the use of high-quality or low-quality minerals in plant foods. The real difference in quality can be determined by the level of contaminants in the final product. Pure, uncontaminated elements are the same, regardless of the source. Elements and compounds that are not available to plants can bog down roots and slow nutrient absorption and availability. For the highest quality mineral plant foods, avoid contaminants and questionable ingredients.

    Reasons for using organics

    There is little argument that mineral fertilizers can more easily burn plants if used carelessly. Overfeeding is always a concern, but is less likely when using organics. Microbes and fungi must work to convert elements into plant available forms, which slows reactions in the root zone as it becomes nutrient rich. While overfeeding with organics is possible, the microbiology at work in the root zone offers a natural buffer. The flavour of organically grown tomatoes, culinary herbs, and resin-producing plants is often said to be better and more complex than crops grown with minerals. The fact is that low-quality or high-quality harvests can be grown with either mineral or organic inputs. One reason why well maintained organic gardens often produce very deep aromas and flavours is, in part, because overfeeding has been avoided.

    Reasons for Using Minerals

    We live in an age where plant chemistry and biology have been analyzed to an exacting degree. Scientists have discovered which elements are taken up by plants, and the specific ratios required for optimum performance. Mineral nutrient formulations can be made using highly available forms, allowing plants to absorb them right away. This process can lead to faster growth, bigger harvests, and increased quality. Many hobby gardeners grow delicious tomatoes in their backyards, using mineral salts from the local garden centre. Even without organics, mineral-grown crops can offer increased flavours and aromas, as long as the grower does not over-use plant foods or harvest prematurely. Attention to detail is required when using mineral fertilizers, and there is no need to sacrifice quality by overdosing plants. When given the correct amounts of mineral inputs, plants can achieve optimum health. Overall plant health is the key to both higher yield and quality.

    Hybrid Nutrient Systems

    Growers all over the world have achieved big yields and potent flavours by using organics and minerals together. Both offer unique benefits, and there is no reason you can’t use them in tandem to get the best of both worlds.

    Many naturally occurring inorganic compounds are not only safe for plants, they are safe enough for you to eat! Don’t reject the idea of using organics, minerals or both before doing some research on the pros, cons and effectiveness of each type of nutrient.

    What are you feeding your plants?

    Not every garden product should be assumed to be safe or effective. Learn about the elements your plants require and the additional organic inputs that offer increased quality. With a little bit of knowledge and high-quality plant nutrients whether organic, mineral, or both, your garden will flourish!

     

  • function of Potassium (K) in plants

    Potassium is a paramount macro-element for overall survival of living things. It is an abundant mineral macronutrient present in both plant and animals tissues. It is necessary for the proper functioning of all living cells. Potassium is relatively abundant in the earth's crust making up to 2.1% by weight. Potassium is mined in the form of potash (KOH), sylvite (KCl), Carnallite and Langbeinite. It is not found in free nature.

    Importance of potassium to plants

    Potassium is an indispensable constituent for the correct development of plants. It is important in photosynthesis, in the regulation of plants responses to light through opening and closing of stomata. Potassium is also important in the biochemical reactions in plants. Basically, potassium (K) is responsible for many other vital processes such as water and nutrient transportation, protein, and starch synthesis.

    Potassium Uptake

    Bio-availability and uptake of K by plants from the soil vary with a number of different factors. The rate of respiration by plants is largely the determining factor for proper uptake and transport of potassium by plants. Its uptake is dependent on sufficient energy (ATP). Potassium plays a vital role in the translocation of essential nutrients, water, and other substances from the roots through the stem to the leaves. It is also made available through fertilizers in the form of K2O. Plant tissues analyze the form of these fertilizers and convert it into a more bio-available form. It is absorbed in the form of ions- K+.

    Functions of Potassium in plants

    Potassium (K) essentially plays a major role in plant physiological processes. Therefore, it is required in large amounts for proper growth and reproduction in plants. It is considered vital after nitrogen as far as nutrients needed by plants are concerned. It is also termed "the quality nutrient" for its contributing factor in a number of biological and chemical processes in plants. Here is why Potassium is important in plants:

    • Potassium regulates the opening and closing of stomata thus regulating the uptake of CO2 thus enhancing photosynthesis.
    • It triggers activation of important biochemical enzymes for the generation of Adenosine Triphosphate (ATP). ATP provides energy for other chemical and physiological processes such as excretion of waste materials in plants.
    • It plays a role in osmoregulation of water and other salts in plant tissues and cells.
    • Potassium also facilitates protein and starch synthesis in plants.
    • It activates enzymes responsible for specific functions.

    Potassium deficiency in plants

    Regardless of its availability from soils, potassium deficiency may occur and might start from the lower leaves and progress towards other vital parts of the plants. Deficiency might cause abnormalities in plants affecting reproduction and growth. Severity depends on with the type of plant and soil. Some of the potassium deficiency symptoms may include:

    • Chlorosis: May cause yellowing of leaves, the margin of the leaves may fall off, and also lead to shedding and defoliation of the leaves.
    • Stunted growth: Potassium being an important growth catalyst, its deficiency or insufficient might lead to slow growth or poor developed roots and stems.
    • Poor resistance to ecological changes: Reduced availability of potassium will directly result in less fluid circulation and translocation of nutrients in plants. This will directly make plants susceptible to temperature changes.

    Importance of potassium in agriculture

    Potassium is important in agriculture and soil gardening. It is used as a constituent in artificial fertilizers. Potassium fertilizers have been seen to increase crop yields, enhance production of grains rich in starch and protein content of plants. Additionally, potassium fertilizers may help improve plants immunity to weather changes, diseases, and nematodes.

    Potassium is majorly used in hydroponics to improve root growth and enhance drought tolerance. It also enhances the building of cellulose and thus reduces lodging.

  • Growing Cherry Tomatoes in Aquaponics

    Cherry Tomato: - 

    Tomatoes are an excellent summer fruiting vegetable to grow using all available methods although physical support is necessary.

    A higher nitrogen concentration is preferable during the early stage to flower stage. However, potassium should be present from the flowering stage to fruit setting to growth.

    Tomatoes are rich in vitamins A and C, low in calories and a source of lycopene (the “Red” in tomatoes), which has been tapped as a cancer-fighting agent.

    If you have experience in growing tomato you know that to get the high-quality products and good yields with a limited space can be quite a challenge.

    We’ll try to consolidate all important things that you need to know if you want to grow tomatoes, have high-quality products and great yields in your greenhouse. We’ll also share our experience and you’ll see great benefits of aquaponic systems for profitable commercial tomato production.

    Tomato is one of the most demanded vegetables. In the season but also out of the season. It is used as a fresh produce but also an input for the production of many different products like sauces. One of the greatest advantages is that it grows in the air and we can use a lot of greenhouse height for our production.

    The main advantages of growing tomatoes in protected spaces (greenhouses) compared to other crops are:

    • It is highly attractive and demanded product
    • We can have very high yields per sqm
    • There are many hybrids that are resistant to diseases.

    Growing Conditions: -

    • When you have set up your aquaponic system and decided to grow tomato you need to pay attention to some details. If you make mistakes, in the beginning, you will not see problems usually until it’s too late to fix them.
    1. Type of aquaponic system?
    2. How to band tomatoes for the best vertical growth?
    3. How to make tomato grow faster?
    • Each and every part of the aquaponic system that is not synched to specific natural laws can create problems in the future. These problems can be insignificant but sometimes these problems can lead to total disaster. For that reason, it is important to have all the information and to understand each part of the system.
    • The first and most important factor is to choose the right aquaponic system for tomato production.
    • Out of all aquaponic systems, BED system is probably the most convenient for many types of crops. But it is not a profitable system. Because it is quite robust, it takes a lot of space and is quite expensive to construct.
    • For profitable tomato cultivation, one of the best aquaponic systems is DUTCH BUCKET

    • In Dutch bucket aquaponic system we are using a number of buckets for growing our crops in them. In buckets, we put any growing media that is suitable for aquaponics. When we are irrigating crops the water is moving through growing medium and feeding the root of our plants.
    • We need to make sure that there is always some water in the bottom of the bucket.
    • We can achieve this by drilling drainage holes on a certain height of the bucket. For this system to work we do not need any additional siphons.
    • When constructing Dutch bucket aquaponic system pay special attention to the following
    1. Greenhouse space usage
    2. Pipes and nozzle clogging
    3. Space for roots development
    4. Bucket drainage
    • Tomatoes prefer warm temperatures with full sun exposure. Below 8-10°C, the plants stop growing, and night temperature 13-14 encourage fruit set. Temperature above 40°C cause floral abortion and poor fruit setting.
    • Tomatoes have a moderate tolerance to salinity, which makes them suitable for areas where pure freshwater is available. However, higher salinity at fruiting stage improves quality of the products.

    Planting Instructions: -

    • Set stakes or plant support structures before transplanting to prevent root damage.
    • Transplant the seedlings into units 3-6 weeks after germination when the seedling is 10-15 cm and when the night time temperatures are constantly above 10°C.
    • In transplanting the seedlings, avoid waterlogged conditions around the plant collar to reduce any risk of diseases.
    • Once the tomato plants are about 60 cm tall, start pruning the unnecessary upper branches. Remove the leaves from the bottom to 30cm of the main stem for better air circulation and reduce fungal incidence.
    • Remove the leaves covering each of the fruiting branches soon before ripening to favour nutrition flow to the fruits and to accelerate maturation.

    Harvesting: -

    • Most cherry tomato plants will start flowering in about a month. Flowers will be followed by tiny green fruits. After a few weeks, those turn into full-blown cherry tomatoes you can harvest.
    • A truly ripe cherry tomato will come off its stem very easily and is well worth waiting an extra day for, so hold off on picking them until they're ripe. Then, pluck individual fruits every day for best results. With luck, your plant will continue to produce right up until winter. If the weather turns unseasonably cool or an early frost threatens, you can tuck an old sheet over and around the plant to extend your harvest season.
    • Fruits can be easily maintained for 2-4 weeks at 5-7°C under 85-90 percentage relative humidity.

    Tips: -

    • PH: 5.5-6.5
    • Plant spacing: 40-60cm (3-5 plants/sqm)
    • Germination time and temperature: 4-6 days and 20-30 °C
    • Growth time: 50-70 days till the first harvest; fruiting 90-129 days up to 8-10 months.
    • Optimal temperature: 13-16°C night, 22-26 °C day
    • Light exposure: full sun
    • Recommended methods: Media Beds and DWC
  • Welcome

    Welcome to Hydrilla.....

4 Item(s)